Collision-Correlatior

Practical Attacks

Comparison with Second-Order Analysis

Conclusion

Improved Collision-Correlation Power Analysis on First Order Protected AES

Christophe Clavier¹ Benoit Feix^{1,2} Georges Gagnerot^{1,2} **Mylène Roussellet**² Vincent Verneuil^{2,3}

¹XLIM-Université de Limoges, France

²INSIDE Secure Aix-en-Provence, France

³Institut de Mathématiques de Bordeaux, France

CHES 2011 - September 29, 2011

Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Conclusion

Outline

Introduction

- Improved Collision-Correlation Analysis Targeted Implementations Description
- Practical Attacks Attack on Blinded S-Box Attack on Masked Inversion
- 4 Comparison with Second-Order Power Analysis

5 Conclusion

Collision-Correlatio

Practical Attacks

Comparison with Second-Order Analysis

Outline

Introduction

- Improved Collision-Correlation Analysis Targeted Implementations Description
- Practical Attacks Attack on Blinded S-Box Attack on Masked Inversion
- 4 Comparison with Second-Order Power Analysis

5 Conclusion

Introduction	Collision-Correlation	Practical Attacks	Comparison with Second-Order Analysis		
Previous Work					
			Collision atta		
			001131011 411401		

 K. Schramm, T. J. Wollinger and C. Parr. A New Class of Collision Attacks and Its Application to DES. FSE 2003.

Introduction ••• Previous Work Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Collision attack

- K. Schramm, T. J. Wollinger and C. Parr. A New Class of Collision Attacks and Its Application to DES. FSE 2003.
- K. Schramm, G. Leander, P. Felke and C. Paar. A Collision-Attack on AES: Combining Side Channel- and Differential-Attack. CHES 2004.

AES

Introduction ••• Previous Work Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Collision attack

- K. Schramm, T. J. Wollinger and C. Parr. A New Class of Collision Attacks and Its Application to DES. FSE 2003.
- K. Schramm, G. Leander, P. Felke and C. Paar. A Collision-Attack on AES: Combining Side Channel- and Differential-Attack. CHES 2004.
- A. Bogdanov. Improved Side-Channel Collision Attacks on AES. SAC 2007

AES

Introduction ••• Previous Work Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Collision attack

- K. Schramm, T. J. Wollinger and C. Parr. A New Class of Collision Attacks and Its Application to DES. FSE 2003.
- K. Schramm, G. Leander, P. Felke and C. Paar. A Collision-Attack on AES: Combining Side Channel- and Differential-Attack. CHES 2004.
- A. Bogdanov. Improved Side-Channel Collision Attacks on AES. SAC 2007
- A. Moradi, O. Mischke and T. Eisenbarth. *Correlation-Enhanced Power Analysis Collision Attack.* CHES 2010.

AES

Introduction Our contribution Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Conclusion

Our Contribution

- Target first-order protected AES implementations
- · Use correlation to detect internal collision
- Practical results on RISC 16-bit implementations
- Attacks validated using simulated and real curves
- Comparison with second-order techniques

Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Conclusion

Outline

Introduction

Improved Collision-Correlation Analysis Targeted Implementations Description

- Practical Attacks Attack on Blinded S-Box Attack on Masked Inversion
- 4 Comparison with Second-Order Power Analysis

5 Conclusion

Targeted Implementations

Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Outline

Introduction

Improved Collision-Correlation Analysis Targeted Implementations

- Attack on Blinded S-Box Attack on Masked Inversion
- 4 Comparison with Second-Order Power Analysis

5 Conclusion

Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Targeted Implementations

AES Implementations

 We focus on AES-128 but our results can be applied to AES-192 and AES-256

- message $M = (m_0 m_1 \dots m_{15})$
- key $K = (k_0 k_1 \dots k_{15})$
- ciphertext $C = (c_0 c_1 ... c_{15})$
- for $i \in [0, 15]$ we denote $x_i = m_i \oplus k_i$
- Attack on SubBytes function in first round
- Two protections against first-order attacks are considered:
 - 1. substitution table masking: $S'(x_i \oplus u) = S(x_i) \oplus v$ same masks *u* and *v* for all bytes
 - masked pseudo-inversion in *GF*(2⁸) using inversion in subfield *GF*(2⁴) (and *GF*(2²)): *I*'(*x_i* ⊕ *u_i*) = *I*(*x_i*) ⊕ *u_i* 16 different masks but same input and output masks

Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Outline

Introduction

Improved Collision-Correlation Analysis Targeted Implementations Description

- Practical Attacks Attack on Blinded S-Box Attack on Masked Inversion
- 4 Comparison with Second-Order Power Analysis

5 Conclusion

	ction Collision-Correlation			
Descrip	tion			
			Princ	iple
	Attack Principle			
	Detect internal collisions between data processed in blinded S-Boxes on the first AES round.			

Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Collision-Correlation Analysis (1)

- Encrypt N times the same message M
- Collect the power traces T^n , $0 \le n \le N-1$
- Consider two instructions whose processing starts at times t₀ and t₁
 / points are acquired per instruction processing
- Construct the two series Θ₀ = (Tⁿ_{t₀})_n and Θ₁ = (Tⁿ_{t₁})_n of power consumptions segments

- Apply a statistical treatment to (Θ₀, Θ₁) to identify if same data was involved in Tⁿ_{to} and Tⁿ_{t1}
- · We choose the Pearson correlation factor

$$\hat{\rho}_{\Theta_0,\Theta_1}(t) = \frac{\operatorname{Cov}(\Theta_0(t),\Theta_1(t))}{\sigma_{\Theta_0(t)}\sigma_{\Theta_1(t)}}$$

Description	

Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Conclusion

Collision-Correlation Analysis (2)

Repeat with other messages until having enough information on key bytes

Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Outline

Introduction

- Improved Collision-Correlation Analysis Targeted Implementations Description
- Practical Attacks Attack on Blinded S-Box Attack on Masked Inversion
- 4 Comparison with Second-Order Power Analysis

5 Conclusion

Attack on Blinded S-Box

Practical Attacks •••••

Outline

3 Practical Attacks Attack on Blinded S-Box Attack on Masked Inversion

Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Conclusion

Attack on Blinded S-Box

First Attack Description (1)

Principle = detect when two SubBytes inputs (and outputs) are equal in first AES round

Result = provide a relation between two key bytes

Attack on Blinded S-Box

Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

First Attack Description (2)

Repeat for several random messages *M* until enough relations have been found

- Encrypt *N* times the same message *M* and collect the *N* traces of first AES round
- Construct the 16 series Θ_i corresponding to the computation of $S'(x_i \oplus u)$
- For the 120 possible pairs (i_1, i_2) compute $\hat{p}_{\Theta_{i_1}, \Theta_{i_2}}(t)$
- When a correlation peak appears a relation between k_{i_1} and k_{i_2} has been found

 \Rightarrow On average 59 messages are needed Total number of curves = $59 \times N$

10/21

Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Conclusion

Attack on Blinded S-Box

Results on simulated curves

Correlation traces obtained on simulated curves for N = 16

Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Attack on Blinded S-Box

Results on real curves

Correlation traces obtained on real curves for N = 25

Total number of acquisitions : $25 \times 59 \approx 1500$

- Improved Collision-Correlation Power Analysis on First Order Protected AES

12/21

Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Conclusion

Attack on Blinded S-Box

First Attack Improvement

Remark: only collision events are exploited but they are not so frequent Idea: exploit non-collision events as they are numerous

- For a given message only 0, 1 or 2 collisions most of the time among 120
- All other pairs (*i*₁, *i*₂) reveal impossible values for *k*_{*i*₁} ⊕ *k*_{*i*₂} ⇒ they are added to a blacklist
- Choose a message which have the maximum probability to generate a collision
- The penalty of a candidate message corresponds to the number of pairs (i_1, i_2) for which $m_{i_1} \oplus m_{i_2}$ is already blacklisted

 \Rightarrow On average 27.5 messages are needed Total number of curves = $27.5 \times N$

On previous exemple we need $27.5 \times 25 \approx 700$ instead of 1500 curves.

- Improved Collision-Correlation Power Analysis on First Order Protected AES

13/21

Practical Attacks 00000000000

Outline

Attack on Masked Inversion

3 Practical Attacks

Attack on Blinded S-Box Attack on Masked Inversion

Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Attack on Masked Inversion

Second Attack Description (1)

Previous attack cannot be applied to masked inversion as masks are different per bytes.

Collision between input and output reveals one key byte except one bit:

$$k_i = m_i$$
 or $k_i = m_i \oplus 1$

inside

Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Conclusion

Attack on Masked Inversion

Second Attack Description (2)

- For each guess $g \in [0, 127]$
 - Encrypt *N* times message *M* s.t. $m_0 = g$ and collect traces $T^{n,g}$, $0 \le n \le N-1$
 - Construct series: Θ_0^g corresponding to the load of $x_0 \oplus u_0$ before inversion Θ_1^g corresponding to the store of $I(x_0) \oplus u_0$ after inversion
 - Compute $\hat{\rho}_{\Theta_0^g,\Theta_1^g}(t)$
- The highest correlation peak reveals k₀ except 1 bit

		Practical Attacks					
		000000 00 0					
Attack on Masked Inversion							

Practical Results

Correlation traces obtained on simulated curves for the pseudo-inversion of the first byte in $GF(2^8)$ with N = 16

Comparison with Second-Order Analysis

Outline

- **Targeted Implementations**
- Attack on Blinded S-Box Attack on Masked Inversion

4 Comparison with Second-Order Power Analysis

Collision-Correlatior

Practical Attacks

Comparison with Second-Order Analysis

Definitions

Target first implementation i.e. S-Box masking.

Consider three functions commonly used for second-order attacks:

- $f_1(x,y) = |x-y|$
- $f_2(x,y) = |x-y|^2$
- $f_3(x,y) = |x \times y|$

Use as distinguisher the Pearson correlation factor $\hat{\rho}$

Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis ○●○ Conclusion

Second Order Attack Modeling

 Construct the series of power consumptions of two S-Box outputs for N messages

 $\theta_0 = (HW_n(S(x_{i_1} \oplus u) \oplus v) + \omega_{\sigma})_{0 \le n \le N-1}$

 $\theta_1 = (HW_n(S(x_{i_2} \oplus u) \oplus v) + \omega_\sigma)_{0 \le n \le N-1}$

- Compute the series of estimated values of S-Box outputs for key guesses g_{i_1} and g_{i_2}

$$W_{g_{i_1},g_{i_2}} = (HW_n(S(m_{i_1} \oplus g_{i_1}) \oplus S(m_{i_2} \oplus g_{i_2})))_{0 \le n \le N-1}$$

• The right key byte is obtained for the highest correlation value $\hat{\rho}(f_i(\theta_0, \theta_1), W_{g_{i_1}, g_{i_2}})$

- Improved Collision-Correlation Power Analysis on First Order Protected AES

18/21

Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Comparison

Compare the success rate of second-order power analysis methods with the collision-correlation one by simulating these attacks for different standard deviation σ of noise ω .

Collision-Correlatior

Practical Attacks

Comparison with Second-Order Analysis

Conclusion

Outline

Introduction

- Improved Collision-Correlation Analysis Targeted Implementations Description
- 3 Practical Attacks Attack on Blinded S-Box Attack on Masked Inversion
- 4 Comparison with Second-Order Power Analysis

5 Conclusion

Collision-Correlatior

Practical Attacks

Comparison with Second-Order Analysis

Conclusion

- Improved collision-correlation technique defeats some first-order protected implementations
- Need less than 1500 acquisitions
- More powerful than previous second-order power analyses
- No need to establish a consumption model for correlation

Collision-Correlation

Practical Attacks

Comparison with Second-Order Analysis

Conclusion

Thanks for your attention.

